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Introduction — Spatiotemporal Sequence
Forecasting

* Many real-world phenomena are spatiotemporal:
* Traffic flow, diffusion of air pollutants, regional rainfall, etc.

* Predicting the multi-step future of these spatiotemporal systems based on
the past is important for many real-world applications
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Typhoon alert system Rainfall nowcasting Forecasting air pollutants

* We call this type of problems Spatiotemporal Sequence Forecasting (STSF)
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Introduction — Definition of STSF

* Alength-T spatiotemporal sequence: X, = [X;, X,,...X7]

Xt e RKX(D+E) K: number of locations, D: number of measurements, E: number of coordinates
M, € REXD  Measurements (observed values at the locations)

Ct - RKXE Coordinates (locations)
e Spatiotemporal sequence forecasting problem:

Xt+1:t+L = argmaxp(XtH:HL X1t -At)-

Xt +1:t+L L-step future (L>1) past observation  auxiliary information

* For problems where both input and output can be spatiotemporal
seguences
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Introduction — Three types of STSF problems
[Shi & Yeung, 2018]
Problem Name Coordinates Measurements
TE-MPC | Trajectory Forecasting of Moving Point Cloud | Changing Fixed/Changing

STSF-RG | Spatiotemporal Forecasting on Regular Grid Fixed regular grid | Changing

STSF-IG | Spatiotemporal Forecasting on Irregular Grid | Fixed irregular grid | Changing

* Examples:
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_ o Rainfall Nowcasting, Weather Data Prediction,
Human Motion Predlctl.on., Video Prediction Traffic Accident Prediction,
Crowd Movement Prediction (Dense Observation) (Sparsely Spread)
TF-MPC STSF-RG STSF-1G
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Introduction — Machine Learning for STSF

» Already have an accurate model? (Know the laws)
» Step 1: Identify the initial condition of the model
» Step 2: Forecast by simulation

* Not always the case!
e Systems with unknown dynamics — Crowd, Atmosphere, Natural Videos

* Machine learning for STSF!

* Train a forecasting model based on the historical data — Learning the laws
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Introduction — Deep Learning for STSF

* Different types of ML methods for STSF: [Shi & Yeung, 2018]
* Feature-based, state-space models, Gaussian process based models, etc.

* Deep learning based
* Deep learning: Layered network structure + End-to-end training

Breakthroughs in many tasks
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Introduction — Outline of Talk

* Exploring deep learning architectures for STSF
* Architectures for STSF-RG:

* Tackle the precipitation nowcasting problem

e Convolutional Long Short-Term Memory (ConvLSTM) - first machine learning
based solution

* Trajectory Gated Recurrent Unit (TrajGRU)
 HKO-7 benchmark - first large-scale benchmark

e Architectures for STSF-1G:

e Convert to spatiotemporal graph
» Gated Attention Network (GaAN)

* Graph GRU (GGRU)
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* Architectures for STSF-RG
e Background — Deep Learning, Precipitation Nowcasting
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Deep Learning 101 — Basics

* Deep Learning
e Layered structure (Stacking building blocks)

Convolution Deconvolution
* End-to-end (Input 2 Model - Output)
* Basic Building Blocks 2B Q\b‘
* Fully-connected Layer: h = Wx + b. mﬁ‘ g
° Act|vat|on. l] — j‘(X) Pooling Unpoolingmp
 Convolution Layer: 3y =W« X +b. H.i; = WxVE) 4 p.

Pooling Layer: Hiij = 9{Xess | (s,1) € N(i,5)})
Deconvolution and Unpooling: “Backward” computation

* Feedforward Neural Networks & Recurrent Neural Networks

18/10/2018 HKO Research Forum 2018 11
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Deep Learning 101 — Feedforward Neural
Networks
A feedforward neural
network (FNN) is acyclic. Convolutional neural network (CNN)
There is no loop.

. O O ‘ .
Oi O >O Convolution Pooling Convolution Pooling Fully-connected

O O
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Deep Learning 101 — Recurrent Neural

Networks
Cycles are allowed in a Basic RNN: h;, = tanh(W h,_; + W_x, + b)
t | network
recurTent helral networ After unfolding the structure, an RNN can
(RNN) . . .
be viewed as an FNN with shared weights.
. ® ® ® ®
™ A = A A — A » A
“
O & ® 6 - ©

An unrolled recurrent neural network.
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Deep Learning 101 — Training

e Stochastic Gradient Descent

e Backpropagation (BP)
. 0f(g(h)) — 9f(g(n) 9g(h) Gradient from higher layer - lower layer
h dg(h) h
* Also known as “Reverse mode of automatic differentiation”

» Backpropagation Through Time (BPTT)
* Unfold the RNN and run BP

14
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Deep Learning 101 — Gated Recurrent NeuraiA
N EtWO rk [Pascanul et.al, ICML2013]

* Product of Jacobians = Vanishing/exploding gradient
 Gated Recurrent Neural Network: Control information flow

Long Short-Term Memory (LSTM) Gated Recurrent Unit (GRU)
i, =o0(Wux, + Wyhi 1 +Wgoc,1 +by), Zy = O'(W;I:;Xt. + W,.h; 1 + b;)-
ft — U(foXt + Wh‘fht_l + ch °Ct1 bf)7 r{ — O-(W;III'Xt + Whrhf—l + bl‘)f

c, =foc, 1 +1i;0otanh(Wp.x; + Wy .h, 1 +b,),
h; — f(w;lrhxl + Iy © (Whhht—l + bh))?

Oy = U(onxt + Whoht—l + Wco oC; + bo)a

hy =(1—-2z)o0 h; +z,0hy_,

h; = o, o tanh(c;).
[Hochreiter & Schmidhuber, 1997] [Chung et al., 2014]
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Precipitation Nowcasting — Definition

 Predict the future rainfall intensity (0-6 hours) in a local region based on
radar echo maps, rain gauge and other data.
* High resolution & high frequency (usually 6min)
* High-dimensional spatiotemporal data

16
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Precipitation Nowcasting — Real-world Impact
+ A Challenging Problem

* Precipitation nowcasting IMPACTS our daily life

Precipitation nowcasting a) Road condition b) Guidance for aviation c) Rainstorm warning

* Complexities of the atmosphere + real-time, large-scale, and fine-
grained nowcasting - Challenging problem!

18/10/2018 HKO Research Forum 2018 17
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Precipitation Nowcasting — Classical Methods

* Numerical weather prediction (NWP) based methods
* Build a model with several physical equations. Predict by simulation.
* More accurate in the longer term
* The first 1-2 hours of model forecasts may not be available

* Optical flow based methods
» Optical flow estimation + Extrapolation (Semi-Lagrangian extrapolation)
* More accurate in the first 1-2 hours
* ROVER algorithm by HKO

[Cheung & Yeung, 2012]

18
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Precipitation Nowcasting — More about
Optical Flow based Methods

 Step-1: Estimate the flow field based on the previous 2 frames
 Step-2: Extrapolate the last frame

MOVA 55,
2013-05-22 02:00 »:r" i

| am

Arrows denote

the estimated
flow field
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el
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Precipitation Nowcasting — Limitations of
Optical Flow based Methods

* Limitations:
* Flow estimation step and radar echo extrapolation step are separated,
accumulative error
* Do not benefit from our available radar-echo sequences
* Longer-range temporal relationship (Optical flow is estimated using 2 frames)

* We need a machine learning based, end-to-end approach to this
problem! - How about deep learning?

18/10/2018 HKO Research Forum 2018 20
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Precipitation Nowcasting — Deep Learning
Solution is Non-trivial

* However, solving the problem by deep learning is not trivial!

* Multi-step prediction
* size of the search space grows exponentially

* Spatiotemporal data
* We need to take advantage of the spatiotemporal correlation within the data

18/10/2018 HKO Research Forum 2018 21
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Precipitation Nowcasting — Formulated as
STSF-RG

* Periodic observations taken from a dynamical system over a spatial
grid =2 sequence of tensors

Observations as 3D Tensors over a spatial grid Forecasts
T-2 T-1 T T+1 T+2 T+3
* Predict the most likely length-K sequence in the future given the
previous J observations
Xig1,.. ., Xy = argmax p(Xpq, ..., Xprx | Xi—gr1, Xi—gio, ..., &)

Xtt1,--, Xt+ K

22
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Precipitation Nowcasting — Encoder-
Forecaster Structure

* Encoder-forecaster (EF) structure [Sutskever et al., 2014]
Xip1,... . X = argmax p(Xipq,..., Xk | Xi—gp1. X—gt2,. .., X&)
Xt4 1,0 X4 K
~ argiax p(XH—la c ey Xt—l—l\' | f(m.cori(:'r(Xt—.]+1r. Xt—.]—{—‘Z: R Xt))

X410 Xp 4 K

18/10/2018 HKO Research Forum 2018 23
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Precipitation Nowcasting — Flatten to vectors

* Naive approach: Treat the 3D tensors as vectors and directly use LSTM
as the encoder and forecaster. [Srivastava et al., 2015]

Xt+1 Xt+2 Xt+3 Xt+4

Xi3 X2 X1 X
* lgnores the spatiotemporal nature of the data

* We propose Convolutional LSTM (ConvLSTM) and Trajectory GRU
(TrajGRU) as new building blocks. [Shi et al., 2015], [Shi et al., 2017]

18/10/2018 HKO Researc h Forum 2018 24
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ConvLSTM — Motivation

* What is the characteristics of the spatiotemporal data?

 Strong correlation between local neighborhoods, i.e., nearby points
tend to act similarly!

* Encode the prior knowledge by specifying the network structure
e ConvLSTM: Combine CNN & RNN by convolutional recurrence

18/10/2018 HKO Research Forum 2018 26
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ConvLSTM — Formula

* Proposed method: Convolutional LSTM (ConvLSTM)

* Inputs are 3D tensors rather than vectors
* Use convolution instead of full-connection in state-to-state / input-

state transition!
i = 0(Wai % X + Wiy x Hy1 + Wei 0 Coq + by) Use Hadamard product to keep
the constant error carousel (CEC)

ft=0Wypx X+ WhypxHi1 +WepoCiq + by)
Ct = froCi_1 + 9 o tanh(Wye % Xy + Whe * Hie1 + be)

Ot = O(Wwo * Xt + Who * Ht—l + Wco o Ct + bo)
H; = o4 o tanh(Cy)

property of cells

18/10/2018 HKO Research Forum 2018 27
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ConvLSTM — Illustration

e FC-LSTM can be viewed as a special case of ConvLSTM with all features
standing on a single cell. (Size = 1x1, Kernel = 1)

» Using ‘state of the outside world’ for boundary grids. Zero padding is used
to indicate ‘total ignorance’ of the outside.

18/10/2018 HKO Research Forum 2018 28



ConvLSTM — EF Structure

Encoding Network

C'onvLSTM,
Lo

ConvLSTM,

Input Forecasting Network
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ConvLST M,

ConvLST M,
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ConvLSTM — Radar Echo Dataset

* Z-R Relationship:  dBZ = 10loga + 10blog R a = 118.239,b = 1.5241
* 97 rainy days from 2011 to 2013 in Hong Kong

* Applies disk filter and rescales the images to be 100x100

* Number of train/val/test sequences: 8148/2037/2037

* 5 for input and 15 for prediction

e Scores: 0.5 mm threshold Truth =1 Truth = 0
* CSI=TP /(TP + FN + FP)
* FAR=FP /(TP + FP)
« POD=TP /(TP + FN) Pred = 0 FN N

* Correlation: iy PiiTij
\/(ZI‘J 17{%))(21‘] T;Z)‘*‘f

Pred =1 TP FP

30
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ConvLSTM — Nowcasting Performance

Model Rainfall-MSE | CSI FAR | POD | Correlation
ConvLSTM(3x3)-3x3-64-3x3-64 1.420 0.577 | 0.195 | 0.660 0.908
Roverl 1.712 0.516 | 0.308 | 0.636 0.843
Rover2 1.684 0.522 | 0.301 | 0.642 0.850
Rover3 1.685 0.522 | 0.301 | 0.642 0.849
FC-LSTM-2000-2000 1.865 0.286 | 0.335 | 0.351 0.774

—ConvLSTM -+ ROVER1 ~ROVER2—--ROVERS3 * FC-LSTM

1, 0.5 1
0.4}
_§o.9 0 0.8
s o 0.3}
[ < 0 0.6
0.8 0.2}
o * %
0.1 04} « e, .
] . %
0.7 0 : 0.2 A
0 5 10 15 0 5 10 15
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Introduction
 What is STSF? Why is it important?
e My research topic: Deep learning for STSF

Architectures for STSF-RG
e Background — Deep Learning, Precipitation Nowcasting
* ConvLSTM
* TrajGRU
* HKO-7

Architectures for STSF-IG
e Background
* GaAN
* GGRU

Conclusion & Future Work

18/10/2018 HKO Research Forum 2018 32



B FENRAR
n 711 THE HONG KONG

ll.J_UJ UNIVERSITY OF SCIENCE

AND TECHNOLOGY

TrajGRU — Motivation

e ConvLSTM is not optimal!

e Convolution applies a location-invariant filter. Convolutional
recurrence lacks the ability to model location-variant spatiotemporal
correlation patterns.

Rotation: —_ Scaling: —>

* Propose a model to actively learn a location-variant connection
structure.
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TraJGRU — ConvGRU Recap

« ConvGRU Zi = 0Ways % Xy + Wi * Hy_1),

) 4%
er * Xt + Whr * Ht—l)a
Hy = fWan % X+ Ry o (Whn * Hiz1)),

Ht = (1 _Zt)OH;_'_ZtOHt—l-

Ry

o

* Convolution applies a location-invariant filter

|4'\‘r!f j I
H:‘.,:,'i,j - f(Wh_h_COIlCat(<Ht—1,:,p,q | (p1 q) € '/\/’lh_] )) - j( Z Wﬁtht—lei-‘Pl,i.j-.QI,z',j)
=1

Fixed!
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TraJGRU — From ConvGRU to TrajGRU

* Our goal: neighborhood set varies at different locations + timestamps.
Size of the neighborhood set

t N f(z whth_la::pl,i,j(g)sQ£,i,j(9))?
(p11,;(0),q1:;(0)) is the lth neighborhood

* Indexing will be non-differentiable in general. We choose to use Bilinear
Sampling to warp the pixels instead (soft attention)

* leytdyx+dx = m=1 Zﬂlzllc,m,nmax(o; 1-]y+dy—m|)max(0,1 — |x + dx —n|)

* TrajGRU uses a parameterized network to output L (dy, dx)s for all the
locations (y, x).

18/10/2018 HKO Research Forum 2018 35
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TrajGRU — Formula & Illustration

y is a subnetwork with two conv-layers.
Generates L flow-maps.

L
Zy = 0(Wa x Xs + Z Wi, * warp(He—1, U1, Vi 1)),

=1 x,

Ut,, Vt, — 'Y(Xt,Ht—l)s

= —

A Xy

(a) For convolutional RNN, the recurrent

L
R = O'(er * X; + z W;ILT * warp(’Ht_l,Ut,z, Vt,l))a connections are fixed over time.
=1 :

L
[
Hy = f(Wan * Xy + Ry 0 () Why, * warp(He_1,Us 1, Vi),
=1
th(l_zt)o,}'{;'i‘zto,}{t_l. i
(b) For trajectory RNN, the recurrent con-
nections are dynamically determined.

A Xy
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Reverse the direction of the links in the forecaster

Encoder Forecaster
RNN —> RNN —> RNN —> RNN
A A \ 2 v
Downsample Downsample Upsample Upsample
A A 2 v
RNN —> RNN —> RNN —> RNN
A A v v
Downsample Downsample Upsample Upsample
A A v v
RNN — RNN —> RNN —> RNN
A A 2 2
Convolution Convolution Convolution Convolution
A A N Y
Il s G 127 G 13 14

18/10/2018

HKO Research Forum 2018

Encoding:

Low-level to High-level
Forecasting:

High-level guides Low-level

Any valid RNN, e.g, ConvGRU,
TrajGRU
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TrajGRU — Findings by Visualizing the Links

* Encoder: local spatiotemporal structure = global spatiotemporal
structure

* Forecaster: Coarse global motion structure = Finer details
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HKO-7 — Motivation

 Evaluated in a small dataset (97 days) and only the 0.5 mm/h
threshold. Far from real-world requirement.

* The whole area “Deep Learning for Precipitation Nowcasting” is still in
its early stage! We are still not clear how models should be evaluated
to meet the need of real-world applications.

* Propose the HKO-7 benchmark to fill the gap
e 7-year dataset
* New evaluation scores
* New evaluation protocols

[Shi et al., 2017]
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* The radar data from 2009 to 2015 collected by HKO (only use days

that have rain gauge record)

e Altitude: 2km, Spatial Range: 512km * 512 km, Resolution: 480 * 480

Train Validate Test
Years 2009-2014 2009-2014 2015
#Days 812 50 131

#Frames 192,168 11,736 31,350

18/10/2018 HKO Research Forum 2018

ﬁginfall Distribution Over Year

Rainfall (mm/h)
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1234567 8 9101112
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HKO-/7 — Dataset

* Rain-rate statistics

Rain Rate (mm/h) Proportion (%) Rainfall Level

0< x <05 90.25 No / Hardly noticeable
0.0< o <2 4.38 Light

2< x <5 2.46 Light to moderate

b< x <10 1.35 Moderate
10< o« <30 1.14 Moderate to heavy
30< 0.42 Rainstorm warning

18/10/2018 HKO Researc h Forum 2018 42
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HKO-7 — Remove Noise in Data

* Radar data are noisy due to factors like ground clutter, sun spikes, sea
clutter, etc.

* We detect the outliers based on the ratio of pixel values.

Thresholdl— 43 [' * Outliers * * Out-of-boundary points]
- =p a 0
140 L ®°° Inliers
aAas Outliers

8 120 100
C
S
n 100} &
a “ ;
0 4, 2 S 200
'_5 80 “ =
[e) A Aly 0
c aA™ A 8
© 60} a 800
o 2 A A 'y > 300
< A A a A
o aal aat A e
s 40 : akia ‘:‘f& ke

20 400

0 h L .

0 50000 100000 150000 0 100 200 300 400
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HKO-7 — Remove Noise in Data

Noise Mask

Filtered
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HKO-7 — Evaluation Scores

* Heavier rainfall occurs less often but has a higher real-world impact

* New scores: B-MSE, B-MAE (1. <2

* Assign larger weights to heavier rainfalls 9, 2<z<5

* Differentiable, can be used in training w(z) =495 5<z<10

* Higher correlation with the classical scores: CSI, HSS ;8’ iof?f) <9
(30, z>

18/10/2018 HKO Research Forum 2018 45
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HKO-7 — Evaluation Methodology

* In real-life, we can actively adapt to newly emerging patterns

» Offline setting: Use 5 frames to predict 20 frames. Cannot use previous
observations

* Online setting: Use 5 frames to predict 20 frames. Can do online updating.
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HKO-7 — Evaluated Algorithms

* No-Deep: Last-Frame, ROVER, ROVER-nonlinear
* Deep: Conv2D, Conv3D, ConvGRU, TrajGRU

* Online setting for deep models
 We use AdaGrad with Ir=1E-4 to fine-tune the models in online setting.

Encoder Forecaster Encoder Forecaster
RNN RNN |—)| RNN RNN
I Convolution |—>| Convolution | Conv2D | A 1 A v ! v | ConvGRU
ConV3D | Downsample | | Downsample | | Upsample | | Upsample | TrajG RU
I Convolution l | Convolution | | RﬁN |_>| RﬁN )| R:N |_)| R:N |
I Convzulion | I Convflution I | Downsample | | Downsample | | Upsample | | Upsample |
[ AW |—> RW > RW [—{ R~wW |
I Convolution | I Convolution | - - 2 - y -
| Convolution | | Convolution | | Convolution | | Convolution |
L5 f(j:ln .G h.G Is Is
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HKO-7 — Evaluation Results

CSI+ HSS 4

Algorithms r>05 r>2 r>5 r>10 r>80 r>05 r>2 r>5 r>10 r>30 DMSEL BMAE]
Offline Setting
Last Frame 04022 03266 02401 0.1574 00692 05207 04531 03582 02512  0.1193 15274 28042
ROVER + Linear 04762 04089 03151 02146 01067 06038  0.5473 04516 03301 01762 11651 23437
ROVER + Non-linear 04655 04074 03226 02164 00951 05896 05436 04590 03318  0.1576 10945 22857
2D CNN 0.5095 04396 03406 02392 01093 06366  0.5809 04851 03690  0.1885 7332 18091
3D CNN 05109 04411 03415 02424 01185 06334 05825 04862 03734 02034 7202 17593
ConvGRU-nobal 0.5476 04661 03526 02138 00712 06756  0.6094 04981 03286  0.1160 9087 19642
ConvGRU 0.5489 04731 03720 02789  0.1776  0.6701 06104 05163 04159 02893 5951 15000
TrajGRU 05528 04759 03751 02835 01856  0.6731  0.6126 05192 04207 02996 5816 14675
Online Setting
2D CNN 05112 04363 03364 02435 01263 06365 05756 04790 03744 02162 6654 17071
3D CNN 05106 04344 03345 02427 01299 06355 05736 04766 03733 02220 6690 16903
ConvGRU 0.5511 04737 03742 02843 01837 06712 06105 05183 04226 02981 5724 14772
TrajGRU 0.5563 04798 03808 02914 01933  0.6760  0.6164 05253 0.4308 03111 5589 14465

* ALL deep models outperform optical-flow based models when trained with B-MSE + B-
MAE

* TrajGRU attains the BEST overall performance among all the deep learning models.
* With online fine-tuning, models CONSISTENTLY perform better.
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HKO-7 — Evaluation Results

* B-MSE/B-MAE correlates better with CSI/HSS at multiple thresholds
than MSE/MAE. We calculate the Kendall’s tau between metrics.

| | CSI HSS

Skill Scores . 5 05 +>92 r>5 r>10 r>30 r>05 r>2 r>5 r>10 r> 30
MSE 024  -039 039 -007 -001 -033 -042 -039 -006 001
MAE 041  -057 -055 -025 -027 -050 -0.60 -055 -024 -0.26
B-MSE 070 -057 -0.61 -086 -084 -062 055 -0.61 -086 -0.84

B-MAE -0.74 -0.59 -0.58 -0.82 -0.92 -0.67 -0.57 -0.59 -0.83 -0.92
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STSF-IG — General Strategy

 For STSF-IG, the stations are sparsely distributed!  [tietal, 2018]
* Construct a spatiotemporal graph based on these stations
* Deep learning on graphs

O
O
o O Convert
O o —>
O
O
Sparsely distributed Connect nearby nodes
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Deep Learning on Graphs — Graph Convolution

Text

5298 it X R
Although mnorth wind howls

® ® (}9
r 1 1 f
(A=A A A{A]

® & & 6 o

Recurrent Neural Network
18/10/2018

p— depth

R 00000
¢le/e'’e)

Convolutional Neural Network
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Graph Convolutional Network
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Deep Learning on Graphs — Graph Convolution

* Generalized convolution: Regular Grid = Graph Structure
* Spectral Approach & Spatial Approach

 Spectral Approach:
* Convolution Theorem: X *Y = F~Y(F(X) o F(Y))
e Graph Fourier Transform:
s FX)=UTX>XxY =U(UTX) o (UTY))
* Eigen-value decomposition of the graph Laplacian: L = UAUT,L =1 — DY?2AD'/?
s fo(X)=U(UTX)o0)=Udiag(0)UTX
* High computational cost!! Can be accelerated but actually leads to the spatial approach.

[Bruna et al., 2014] [Duvenaud et al., 2015] [Kipf & Welling, 2017] [Zhang et al., 2018]
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Deep Learning on Graphs — Graph Convolution

* Spatial Approach:

* Aggregate information from the local neighborhood + share parameters
* Graph aggregator: y; = 1g(x;, {Zy,})

Permutation-invariant

O Different sizes of N;

Mean Pooling, Max

Pooling, ...
yi = fWxgy +Db)

Spatial Convolution Graph Convolution
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Deep Learning on Graphs — Graph
Convolutional Networks

Data L1 L2 Label

: NS
= = A =
N\

Node Classification
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GaAN — Motivation

* Performance of graph convolutional neural networks is strongly
related to the graph aggregator [Hamilton et al., 2017]

* Investigate the performance of different graph aggregators
* Inductive node classification on large graphs

* Propose a new attention-based aggregator called Gated Attention
Networks (GaAN)

* Traditional multi-head attention based aggregator treats each head equally
* Soft gates to control the attention heads’ importance

[Zhang et al., 2018]
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GaAN — Types of Graph Aggregators

Pooling-based

Yi= CbO(Xi D pOOljeNi (C/)v(zj)))

[Hamilton et al., 2017]
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Multi-head

“local” context

®
BEEERCIC

Pairwise -sum

“ouxi || X ulofb )

k= 1j€NL

k N
w) = o (xi,2)).

[Liang et al., 2016]
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[Veli“ckovi c et al., 2018]

III

“global” context

i —) - — ) —I
/ P | PP |
{ ( M
: \_/ \g/ ‘é/ '\{/:
Wit [|Wa2{Wis || Wid|r
N

Attention based

y; = FCy, (x; & || > wiEChu (2))),
k=1j€EN;

o _ _ exp(u (xizy)
Y el (ki z))
¢(A)(X Z) <FC6(1121) (X)FCG(}&)(Z»
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GaAN — Limitations of Standard Multi-head
Attention

e Head = Subspace
* Traditional multi-head attention treats all subspaces equally

* For some nodes, certain subspaces are more important.
e E.g., 7 types of relationships in total, each node has only 3 valid relationships
* Forcing all nodes to use all 7 aggregated vectors will mislead the network

* GaAN adds soft gates on the attention heads to control their relative
importance.
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GaAN — Gated Attention Networks

Number of heads

Importance
(k) (k) h
yi = FCQO (Xz Q% | | 9; y: U)i.j FC(;(YIC) (ZJ)))
=1 JEN l T~ Attention head

1 K |
8i = [gz( ): gz( )} — '/l,r")g(xiazf\/}):

* g; is between O (low importance) and 1 (high importance)
* We use a small convolutional network to compute g;

Z.’i eEN; Zj )
[Nl

g = FCy_ (x; ® max({FCy,, (z;)}) &
g JEN;
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GaAN — Inductive Node Classification

* Compare the performance of different graph aggregators

* Goal: classify unseen testing nodes
Any graph aggregator

Data /Ll / \ Label
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GaAN — Datasets

* PPI: Protein-protein interaction graph. Human tissue.
e Reddit: Posts are connected if the same user commented on them.

Data #Nodes #Edges #Fea #Classes

PPI 56.9K  806.2K 50 121 (multi) wmutiiabe
Reddit| [233.0K] [114.6M] 602 41(single) wmuticas

_

So far the largest dataset
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GaAN — Main Results

[Hamilton et al., 2017]

[Veli"ckovicetal, 2018] (AT [96]

[Chen et al., 2018]

Implemented by us —=

18/10/2018

Models / Datasets PPI Reddit
GraphSAGE [38] (61.2)" 95.4
97.3 £+ 0.2 =

Fast GCN [14] - 93.7

— 2-Layer FNN 54.07+0.06  73.5840.09
Avg. pooling 96.85+0.19  95.78+0.07
Max pooling 98.394+0.05  95.6240.03
Pairwise+sigmoid 98.394+0.05  95.86+0.08
Pairwise+tanh 98.32+0.18  95.8040.03
Attention-only 98.46+0.09  96.19+£0.07
— GaAN 98.71+0.02 96.36+0.03
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SOTA
performance
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GaAN — Visualizing the Gate Values

0 1 2 3 4 5 6 7 Reddit Dataset
: ' ' 1.0
231685
0.8
232575
= 0.6
3 231131 .
S -0.4
232309 .
-0.2
230338 .
—0.0

* The gate-generation network can be learned to assign different
importance to different heads.
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GGRU — RNNs for Spatiotemporal Graphs

* Unified framework to convert graph aggregators to RNNs for
spatiotemporal graphd

* Graph GRU (GGRU) U, =0(le,,(X;, X;G.) +Te,, (X ® Hi_1, H, 1;G))),
R; =0(Te,, (X, Xi;Gs) +To, (Xi®H;1,H,1:G)),
H, =h(Te,, (X;, Xi;Gs) + Riole,, (Xi®Hy—1,Hi—1;Gy)),
H,=(1-U,)oH, + U, oH, ,.

States/Inputs are all graphs

I'e(X,Z;G)Means applying the graph aggregator for all nodes inG ,
X;: input features, H;: hidden states of the nodes

U;: the update gate, R;: the reset gate
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GGRU — EF Structure for STSF-IG

Encoder Decoder
X3 ------ : XT4 ------ E XTS
r T Ay T

Graph GRU —»| Graph GRU > Graph GRU | Graph GRU

3 AP A S R

I’
Graph GRU »| Graph GRU [--» Graph GRU —» Graph GRU

rT FT 5 rtoss i ptoss

X1 Xz X3 X4
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Conclusion

e Architectures for STSF-RG
e ConvLSTM

* Convolutional recurrence
* First ML solution for precipitation nowcasting
* TrajGRU
* Actively learns the recurrent connection
* HKO-7
* First large-scale benchmark for precipitation nowcasting
 Architectures for STSF-I1G
* GaAN

» Soft gates to control each attention heads’ importance
* SOTA performance for inductive node classification on large graph

* GGRU
* Unified framework for converting graph aggregator to RNN for STSF-IG
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Future Work

* Use GGRU for traffic speed "*i......,"‘,- X |
forecasting T ¢

* Add a global external memory | w \
structure to the existing Los A
models

* Handle uncertainty by using s = f(Fs; 01), s ~ f(F:01),
probabilistic ) —
encoder/forecaster X140 = g(s;6). Xig1:4L ~ Tg(s;02).
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