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• Many real-world phenomena are spa1otemporal:
• Traffic flow, diffusion of air pollutants, regional rainfall, etc.

• Predic1ng the mul1-step future of these spa1otemporal systems based on 
the past is important for many real-world applica1ons

• We call this type of problems Spa1otemporal Sequence Forecas1ng (STSF)
Typhoon alert system Rainfall nowcasting Forecasting air pollutants

Introduction – Spatiotemporal Sequence 
Forecasting
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Introduc)on – Defini)on of STSF

• A length-T spatiotemporal sequence:

• Spatiotemporal sequence forecasting problem:

• For problems where both input and output can be spatiotemporal 
sequences

Measurements (observed values at the locations)

Coordinates (locations)

K: number of locations, D: number of measurements, E: number of coordinates 

L-step future (L>1) past observaCon auxiliary information
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Introduction – Three types of STSF problems

• Examples:

Human Motion Prediction,
Crowd Movement Prediction

TF-MPC

Weather Data Prediction,
Traffic Accident Prediction,
(Sparsely Spread)

STSF-IG

Rainfall Nowcasting,
Video Prediction
(Dense Observation)

STSF-RG

TF-MPC

STSF-RG

STSF-IG

[Shi & Yeung, 2018]
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Introduction – Machine Learning for STSF

• Already have an accurate model? (Know the laws)
• Step 1: Identify the initial condition of the model
• Step 2: Forecast by simulation
• Not always the case!

• Systems with unknown dynamics – Crowd, Atmosphere, Natural Videos

• Machine learning for STSF!
• Train a forecasting model based on the historical data – Learning the laws
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Introduction – Deep Learning for STSF

• Different types of ML methods for STSF:
• Feature-based, state-space models, Gaussian process based models, etc.
• Deep learning based

• Deep learning:  Layered network structure + End-to-end training

[Shi & Yeung, 2018]

Object DetectionInput à Output Machine Translation

Breakthroughs in many tasks
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Introduction – Outline of Talk

• Exploring deep learning architectures for STSF
• Architectures for STSF-RG:

• Tackle the precipitation nowcasting problem
• Convolutional Long Short-Term Memory (ConvLSTM) - first machine learning 

based solution
• Trajectory Gated Recurrent Unit (TrajGRU)
• HKO-7 benchmark - first large-scale benchmark

• Architectures for STSF-IG:
• Convert to spatiotemporal graph
• Gated Attention Network (GaAN)
• Graph GRU (GGRU)
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Deep Learning 101 – Basics

• Deep Learning
• Layered structure (Stacking building blocks)
• End-to-end (Input à Model à Output)

• Basic Building Blocks
• Fully-connected Layer:
• Activation:
• Convolution Layer:
• Pooling Layer:
• Deconvolution and Unpooling: “Backward” computation

• Feedforward Neural Networks & Recurrent Neural Networks
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Deep Learning 101 – Feedforward Neural 
Networks

A feedforward neural 
network (FNN) is acyclic. 
There is no loop.

Convolutional neural network (CNN)
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Deep Learning 101 – Recurrent Neural 
Networks

Cycles are allowed in a 
recurrent neural network 
(RNN)

Basic RNN:

After unfolding the structure, an RNN can 
be viewed as an FNN with shared weights.
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Deep Learning 101 – Training

• Stochas(c Gradient Descent
• Backpropaga(on (BP)

• !"($ % )
% = !"($ % )

!$ %
!$ %
%

• Also known as “Reverse mode of automa(c differen(a(on”

• Backpropaga(on Through Time (BPTT)
• Unfold the RNN and run BP

Gradient from higher layer à lower layer
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Deep Learning 101 – Gated Recurrent Neural 
Network
• Product of Jacobians à Vanishing/exploding gradient
• Gated Recurrent Neural Network: Control information flow

[PascanuI et.al, ICML2013]

Long Short-Term Memory (LSTM) Gated Recurrent Unit (GRU)

[Hochreiter & Schmidhuber, 1997] [Chung et al., 2014]
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Precipitation Nowcasting – Definition
• Predict the future rainfall intensity (0-6 hours) in a local region based on 

radar echo maps, rain gauge and other data. 
• High resolu>on & high frequency (usually 6min)
• High-dimensional spa>otemporal data
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Precipitation Nowcasting – Real-world Impact 
+ A Challenging Problem
• Precipitation nowcasting IMPACTS our daily life

• Complexities of the atmosphere + real-time, large-scale, and fine-
grained nowcasting → Challenging problem! 

a) Road conditionPrecipitation nowcasting b) Guidance for aviaGon c) Rainstorm warning
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Precipitation Nowcasting – Classical Methods

• Numerical weather prediction (NWP) based methods
• Build a model with several physical equations. Predict by simulation.
• More accurate in the longer term
• The first 1-2 hours of model forecasts may not be available

• Optical flow based methods
• Optical flow estimation + Extrapolation (Semi-Lagrangian extrapolation)
• More accurate in the first 1-2 hours
• ROVER algorithm by HKO 

[Cheung & Yeung, 2012]
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Precipitation Nowcasting – More about 
Optical Flow based Methods
• Step-1: Estimate the flow field based on the previous 2 frames
• Step-2: Extrapolate the last frame

Arrows denote 
the estimated 
flow field
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Precipitation Nowcasting – Limitations of 
Optical Flow based Methods
• Limita&ons:

• Flow es&ma&on step and radar echo extrapola&on step are separated, 
accumula&ve error

• Do not benefit from our available radar-echo sequences
• Longer-range temporal rela&onship (Op&cal flow is es&mated using 2 frames)

• We need a machine learning based, end-to-end approach to this 
problem! à How about deep learning?
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Precipitation Nowcasting – Deep Learning 
Solution is Non-trivial
• However, solving the problem by deep learning is not trivial!
• Multi-step prediction

• size of the search space grows exponentially

• Spatiotemporal data
• We need to take advantage of the spatiotemporal correlation within the data
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Precipitation Nowcasting – Formulated as 
STSF-RG
• Periodic observations taken from a dynamical system over a spatial 

grid à sequence of tensors

• Predict the most likely length-K sequence in the future given the 
previous J observations

Cell Cell

T-2 T-1

Cell

T

Observations as 3D Tensors over a spatial grid

Cell Cell

T+1 T+2

Cell

T+3

Forecasts

chine learning perspective, this problem can be regarded as a spatiotemporal sequence forecasting
problem.

Suppose we observe a dynamical system over a spatial region represented by an M ⇥N grid which
consists of M rows and N columns. Inside each cell in the grid, there are P measurements which
vary over time. Thus, the observation at any time can be represented by a tensor X 2 RP⇥M⇥N ,
where R denotes the domain of the observed features. If we record the observations periodically, we
will get a sequence of tensors X̂1, X̂2, . . . , X̂t. The spatiotemporal sequence forecasting problem is
to predict the most likely length-K sequence in the future given the previous J observations which
include the current one:

X̃t+1, . . . , X̃t+K = argmax
Xt+1,...,Xt+K

p(Xt+1, . . . ,Xt+K | X̂t�J+1, X̂t�J+2, . . . , X̂t) (1)

For precipitation nowcasting, the observation at every timestamp is a 2D radar echo map. If we
divide the map into tiled non-overlapping patches and view the pixels inside a patch as its measure-
ments (see Fig. 1), the nowcasting problem naturally becomes a spatiotemporal sequence forecasting
problem.

We note that our spatiotemporal sequence forecasting problem is different from the one-step time
series forecasting problem because the prediction target of our problem is a sequence which contains
both spatial and temporal structures. Although the number of free variables in a length-K sequence
can be up to O(MK

N
K
P

K), in practice we may exploit the structure of the space of possible
predictions to reduce the dimensionality and hence make the problem tractable.

2.2 Long Short-Term Memory for Sequence Modeling

For general-purpose sequence modeling, LSTM as a special RNN structure has proven stable and
powerful for modeling long-range dependencies in various previous studies [12, 11, 17, 23]. The
major innovation of LSTM is its memory cell ct which essentially acts as an accumulator of the
state information. The cell is accessed, written and cleared by several self-parameterized controlling
gates. Every time a new input comes, its information will be accumulated to the cell if the input gate
it is activated. Also, the past cell status ct�1 could be “forgotten” in this process if the forget gate
ft is on. Whether the latest cell output ct will be propagated to the final state ht is further controlled
by the output gate ot. One advantage of using the memory cell and gates to control information flow
is that the gradient will be trapped in the cell (also known as constant error carousels [12]) and be
prevented from vanishing too quickly, which is a critical problem for the vanilla RNN model [12,
17, 2]. FC-LSTM may be seen as a multivariate version of LSTM where the input, cell output and
states are all 1D vectors. In this paper, we follow the formulation of FC-LSTM as in [11]. The key
equations are shown in (2) below, where ‘�’ denotes the Hadamard product:

it = �(Wxixt +Whiht�1 +Wcict�1 + bi)

ft = �(Wxfxt +Whfht�1 +Wcfct�1 + bf )

ct = ft � ct�1 + it � tanh(Wxcxt +Whcht�1 + bc)

ot = �(Wxoxt +Whoht�1 +Wco � ct + bo)

ht = ot � tanh(ct)

(2)

Multiple LSTMs can be stacked and temporally concatenated to form more complex structures.
Such models have been applied to solve many real-life sequence modeling problems [23, 26].

3 The Model

We now present our ConvLSTM network. Although the FC-LSTM layer has proven powerful for
handling temporal correlation, it contains too much redundancy for spatial data. To address this
problem, we propose an extension of FC-LSTM which has convolutional structures in both the
input-to-state and state-to-state transitions. By stacking multiple ConvLSTM layers and forming an
encoding-forecasting structure, we are able to build a network model not only for the precipitation
nowcasting problem but also for more general spatiotemporal sequence forecasting problems.

3
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Precipita)on Nowcas)ng – Encoder-
Forecaster Structure
• Encoder-forecaster (EF) structure [Sutskever et al., 2014]
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Precipitation Nowcasting – Flatten to vectors

• Naïve approach: Treat the 3D tensors as vectors and directly use LSTM 
as the encoder and forecaster. 

• Ignores the spatiotemporal nature of the data

• We propose Convolutional LSTM (ConvLSTM) and Trajectory GRU 
(TrajGRU) as new building blocks.

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

Xt-3 Xt-2 Xt-1 Xt

Xt+1 Xt+2 Xt+3 Xt+4

[Srivastava et al., 2015]

[Shi et al., 2015], [Shi et al., 2017]
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ConvLSTM – Mo*va*on

• What is the characteristics of the spatiotemporal data?
• Strong correlation between local neighborhoods, i.e., nearby points 

tend to act similarly!
• Encode the prior knowledge by specifying the network structure
• ConvLSTM: Combine CNN & RNN by convolutional recurrence
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ConvLSTM – Formula

• Proposed method: Convolu2onal LSTM (ConvLSTM)
• Inputs are 3D tensors rather than vectors
• Use convolu2on instead of full-connec2on in state-to-state / input-

state transi2on!

2D Image 3D Tensor

P

P

Figure 1: Transforming 2D image
into 3D tensor

Ht�1, Ct�1

Ht, Ct

Ht+1, Ct+1

Xt

Xt+1

Figure 2: Inner structure of ConvLSTM

3.1 Convolutional LSTM

The major drawback of FC-LSTM in handling spatiotemporal data is that it has to unfold the inputs
to 1D vectors before processing and, as a result, all the spatial information will be lost during this
process. To overcome this problem, a distinguishing feature of our design is that all the inputs
X1, . . . ,Xt, cell outputs C1, . . . , Ct, hidden states H1, . . . ,Ht, and gates it, ft, ot of the ConvLSTM
are 3D tensors whose last two dimensions are spatial dimensions (rows and columns). To get a
better picture of the inputs and states, we may imagine them as vectors standing on a spatial grid.
The ConvLSTM determines the future state of a certain cell in the grid by the inputs and past states
of its local neighbors. This can easily be achieved by using a convolution operator in the state-to-
state and input-to-state transitions (see Fig. 2). The key equations of ConvLSTM are shown in (3)
below, where ‘⇤’ denotes the convolution operator and ‘�’, as before, denotes the Hadamard product:

it = �(Wxi ⇤ Xt +Whi ⇤Ht�1 +Wci � Ct�1 + bi)

ft = �(Wxf ⇤ Xt +Whf ⇤Ht�1 +Wcf � Ct�1 + bf )

Ct = ft � Ct�1 + it � tanh(Wxc ⇤ Xt +Whc ⇤Ht�1 + bc)

ot = �(Wxo ⇤ Xt +Who ⇤Ht�1 +Wco � Ct + bo)

Ht = ot � tanh(Ct)

(3)

If we view the states as the hidden representations of moving objects, a ConvLSTM with a larger
transitional kernel should be able to capture faster motions while one with a smaller kernel can
capture slower motions. Also, if we adopt a similar view as [16], the inputs, cell outputs and hidden
states of the traditional FC-LSTM represented by (2) may also be seen as 3D tensors with the last
two dimensions being 1. In this sense, FC-LSTM is actually a special case of ConvLSTM with all
features standing on a single cell.

To ensure that the states have the same number of rows and same number of columns as the inputs,
padding is needed before applying the convolution operation. Here, padding of the hidden states on
the boundary points can be viewed as using the state of the outside world for calculation. Usually,
before the first input comes, we initialize all the states of the LSTM to zero which corresponds to
“total ignorance” of the future. Similarly, if we perform zero-padding (which is used in this paper)
on the hidden states, we are actually setting the state of the outside world to zero and assume no prior
knowledge about the outside. By padding on the states, we can treat the boundary points differently,
which is helpful in many cases. For example, imagine that the system we are observing is a moving
ball surrounded by walls. Although we cannot see these walls, we can infer their existence by finding
the ball bouncing over them again and again, which can hardly be done if the boundary points have
the same state transition dynamics as the inner points.

3.2 Encoding-Forecasting Structure

Like FC-LSTM, ConvLSTM can also be adopted as a building block for more complex structures.
For our spatiotemporal sequence forecasting problem, we use the structure shown in Fig. 3 which
consists of two networks, an encoding network and a forecasting network. Like in [21], the initial
states and cell outputs of the forecasting network are copied from the last state of the encoding
network. Both networks are formed by stacking several ConvLSTM layers. As our prediction target
has the same dimensionality as the input, we concatenate all the states in the forecasting network
and feed them into a 1⇥ 1 convolutional layer to generate the final prediction.

We can interpret this structure using a similar viewpoint as [23]. The encoding LSTM compresses
the whole input sequence into a hidden state tensor and the forecasting LSTM unfolds this hidden

4

Use Hadamard product to keep 
the constant error carousel (CEC) 
property of cells
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ConvLSTM – Illustration

• FC-LSTM can be viewed as a special case of ConvLSTM with all features 
standing on a single cell. (Size = 1x1, Kernel = 1)
• Using ‘state of the outside world’ for boundary grids. Zero padding is used 

to indicate ‘total ignorance’ of the outside.

Ht�1, Ct�1

Ht, Ct

Ht+1, Ct+1

Xt

Xt+1

InputsStates
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ConvLSTM – EF Structure
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ConvLSTM – Radar Echo Dataset

• Z-R Rela(onship: 
• 97 rainy days from 2011 to 2013 in Hong Kong
• Applies disk filter and rescales the images to be 100x100
• Number of train/val/test sequences: 8148/2037/2037
• 5 for input and 15 for predic(on
• Scores: 0.5 mm threshold

• CSI = TP / (TP + FN + FP)
• FAR = FP / (TP + FP)
• POD = TP / (TP + FN)
• Correla(on:

Truth = 1 Truth = 0

Pred = 1 TP FP

Pred = 0 FN TN
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ConvLSTM – Nowcasting Performance
Table 2: Comparison of the average scores of different models over 15 prediction steps.

Model Rainfall-MSE CSI FAR POD Correlation
ConvLSTM(3x3)-3x3-64-3x3-64 1.420 0.577 0.195 0.660 0.908

Rover1 1.712 0.516 0.308 0.636 0.843
Rover2 1.684 0.522 0.301 0.642 0.850
Rover3 1.685 0.522 0.301 0.642 0.849
FC-LSTM-2000-2000 1.865 0.286 0.335 0.351 0.774
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Figure 5: Comparison of different models
based on four precipitation nowcasting met-
rics over time.

Figure 6: Two predicion examples for the pre-

cipitation nowcasting problem. All the pre-
dictions and ground truths are sampled with an
interval of 3. From top to bottom: input frames;
ground truth frames; prediction by ConvLSTM
network; prediction by ROVER2.

misses (prediction = 0, truth = 1) and false alarms (prediction = 1, truth = 0). The three skill scores
are defined as CSI = hits

hits+misses+falsealarms , FAR = falsealarms
hits+falsealarms , POD = hits

hits+misses . The cor-

relation of a predicted frame P and a ground-truth frame T is defined as
P

i,j Pi,jTi,j
p

(
P

i,j P 2
i,j)(

P
i,j T 2

i,j)+"

where " = 10�9.

All results are shown in Table 2 and Fig. 5. We can find that the performance of the FC-LSTM
network is not so good for this task, which is mainly caused by the strong spatial correlation in the
radar maps, i.e., the motion of clouds is highly consistent in a local region. The fully-connected
structure has too many redundant connections and makes the optimization very unlikely to capture
these local consistencies. Also, it can be seen that ConvLSTM outperforms the optical flow based
ROVER algorithm, which is mainly due to two reasons. First, ConvLSTM is able to handle the
boundary conditions well. In real-life nowcasting, there are many cases when a sudden agglom-
eration of clouds appear at the boundary, which indicates that some clouds are coming from the
outside. If the ConvLSTM network has seen similar patterns during training, it can discover this
type of sudden changes in the encoding network and give reasonable predictions in the forecasting
network. This, however, can hardly be achieved by optical flow and semi-Lagrangian advection
based methods. Another reason is that, ConvLSTM is trained end-to-end for this task and some
complex spatiotemporal patterns in the dataset can be learned by the nonlinear and convolutional
structure of the network. For the optical flow based approach, it is hard to find a reasonable way to
update the future flow fields and train everything end-to-end. Some prediction results of ROVER2
and ConvLSTM are shown in Fig. 6. We can find that ConvLSTM can predict the future rainfall
contour more accurately especially in the boundary. Although ROVER2 can give sharper predic-
tions than ConvLSTM, it triggers more false alarms and is less precise than ConvLSTM in general.
Also, the blurring effect of ConvLSTM may be caused by the inherent uncertainties of the task, i.e,
it is almost impossible to give sharp and accurate predictions of the whole radar maps in longer-term
predictions. We can only blur the predictions to alleviate the error caused by this type of uncertainty.

5 Conclusion and Future Work

In this paper, we have successfully applied the machine learning approach, especially deep learning,
to the challenging precipitation nowcasting problem which so far has not benefitted from sophisti-
cated machine learning techniques. We formulate precipitation nowcasting as a spatiotemporal se-
quence forecasting problem and propose a new extension of LSTM called ConvLSTM to tackle the

8
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TrajGRU – Motivation

• ConvLSTM is not optimal!
• Convolution applies a location-invariant filter. Convolutional 

recurrence lacks the ability to model location-variant spatiotemporal 
correlation patterns.

• Propose a model to actively learn a location-variant connection 
structure.
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TrajGRU – ConvGRU Recap 

• ConvGRU

• Convolution applies a location-invariant filter

Fixed!
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TrajGRU – From ConvGRU to TrajGRU

• Our goal: neighborhood set varies at different locations + timestamps.

• Indexing will be non-differentiable in general. We choose to use Bilinear 
Sampling to warp the pixels instead (soft attention)

• !",$%&$,'%&' = ∑*+,- ∑.+,/ !",*,.max(0, 1 − 7 + 97 − : )max(0, 1 − < + 9< − = )
• TrajGRU uses a parameterized network to output L (97, 9<)s for all the 

locations (7, <).

(>?,@,A B , C?,@,A(B)) is the Dth neighborhood

Size of the neighborhood set
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TrajGRU – Formula & Illustration
! is a subnetwork with two conv-layers. 
Generates L flow-maps.
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TrajGRU – EF Structure

RNN

RNN

RNN

Downsample

Downsample

Convolution

RNN

RNN

RNN

Downsample

Downsample

Convolution

RNN

RNN

RNN

Upsample

Upsample

Convolution

RNN

RNN

RNN

Upsample

Upsample

Convolution

Encoder Forecaster

Encoding:
Low-level to High-level

Forecasting:
High-level guides Low-level

Any valid RNN, e.g, ConvGRU, 
TrajGRU

Reverse the direction of the links in the forecaster
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TrajGRU – Findings by Visualizing the Links

• Encoder: local spatiotemporal structure à global spatiotemporal 
structure
• Forecaster: Coarse global motion structure à Finer details
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HKO-7 – Motivation

• Evaluated in a small dataset (97 days) and only the 0.5 mm/h 
threshold. Far from real-world requirement.
• The whole area “Deep Learning for Precipitation Nowcasting” is still in 

its early stage! We are still not clear how models should be evaluated
to meet the need of real-world applications.
• Propose the HKO-7 benchmark to fill the gap

• 7-year dataset
• New evaluation scores
• New evaluation protocols

[Shi et al., 2017]
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HKO-7 – Dataset

• The radar data from 2009 to 2015 collected by HKO (only use days 
that have rain gauge record)
• Altitude: 2km, Spatial Range: 512km * 512 km, Resolution: 480 * 480
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HKO-7 – Dataset

• Rain-rate sta+s+cs
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HKO-7 – Remove Noise in Data

• Radar data are noisy due to factors like ground clutter, sun spikes, sea 
clutter, etc.
• We detect the outliers based on the ratio of pixel values.
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HKO-7 – Remove Noise in Data

Raw Noise Mask Filtered
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HKO-7 – Evalua-on Scores

• Heavier rainfall occurs less often but has a higher real-world impact
• New scores: B-MSE, B-MAE
• Assign larger weights to heavier rainfalls
• Differentiable, can be used in training
• Higher correlation with the classical scores: CSI, HSS
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HKO-7 – Evaluation Methodology

• In real-life, we can actively adapt to newly emerging patterns
• Offline setting: Use 5 frames to predict 20 frames. Cannot use previous 

observations
• Online setting: Use 5 frames to predict 20 frames. Can do online updating.
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HKO-7 – Evaluated Algorithms

• No-Deep: Last-Frame, ROVER, ROVER-nonlinear

• Deep: Conv2D, Conv3D, ConvGRU, TrajGRU

• Online setting for deep models
• We use AdaGrad with lr=1E-4 to fine-tune the models in online setting.

RNN

RNN

RNN

Downsample

Downsample

Convolution

RNN

RNN

RNN

Downsample

Downsample

Convolution

RNN

RNN

RNN

Upsample

Upsample

Convolution

RNN

RNN

RNN

Upsample

Upsample

Convolution

Encoder Forecaster

Conv2D
Conv3D

ConvGRU
TrajGRU
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HKO-7 – Evaluation Results

• ALL deep models outperform optical-flow based models when trained with B-MSE + B-
MAE

• TrajGRU attains the BEST overall performance among all the deep learning models. 
• With online fine-tuning, models CONSISTENTLY perform better. 
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HKO-7 – Evaluation Results

• B-MSE/B-MAE correlates better with CSI/HSS at multiple thresholds 
than MSE/MAE. We calculate the Kendall’s tau between metrics.
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STSF-IG – General Strategy

• For STSF-IG, the stations are sparsely distributed!
• Construct a spatiotemporal graph based on these stations
• Deep learning on graphs

[Li et al., 2018]

Sparsely distributed Connect nearby nodes
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Deep Learning on Graphs – Graph Convolu4on

GraphImageText

Recurrent Neural Network Convolutional Neural Network Graph Convolutional Network
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Deep Learning on Graphs – Graph Convolution

• Generalized convolution: Regular Grid à Graph Structure

• Spectral Approach & Spatial Approach

• Spectral Approach:

• Convolution Theorem: X ∗ # = %&'(% ) ∘ % # )
• Graph Fourier Transform:

• % ) = ,-)à X ∗ # = ,((,-)) ∘ (,-#))
• Eigen-value decomposition of the graph Laplacian: . = ,Λ,-, . = 1 − 3'/563'/5
• 78 ) = ,((,-)) ∘ 9) = , :;<=(9),-)
• High computational cost!! Can be accelerated but actually leads to the spatial approach.

[Bruna et al., 2014] [Duvenaud et al., 2015] [Kipf & Welling, 2017] [Zhang et al., 2018]
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Deep Learning on Graphs – Graph Convolu4on

• Spatial Approach:
• Aggregate information from the local neighborhood + share parameters
• Graph aggregator:  !" = $%('", {*+,})

Spatial Convolution Graph Convolution

Permutation-invariant

Different sizes of /"

Mean Pooling, Max 
Pooling, …!" = 0(1'23, + 5)
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Deep Learning on Graphs – Graph 
Convolutional Networks

1

0 1

0
0

0
1

1 1
1

0

Node Classification

L1 L2

!"# !"$ !"%

Data Label
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GaAN – Motivation

• Performance of graph convolu1onal neural networks is strongly 
related to the graph aggregator [Hamilton et al., 2017]

• Inves1gate the performance of different graph aggregators
• Induc1ve node classifica1on on large graphs

• Propose a new aEen1on-based aggregator called Gated AEen1on 
Networks (GaAN)
• Tradi1onal mul1-head aEen1on based aggregator treats each head equally
• SoP gates to control the aEen1on heads’ importance

[Zhang et al., 2018]
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GaAN – Types of Graph Aggregators

Pooling-based Pairwise-sum A2en3on-based

Multi-head

[Hamilton et al., 2017] [Liang et al., 2016]

[Veliˇckovi ́c et al., 2018]

“global” context

“local” context
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GaAN – Limitations of Standard Multi-head 
Attention
• Head à Subspace
• Traditional multi-head attention treats all subspaces equally
• For some nodes, certain subspaces are more important.

• E.g., 7 types of relationships in total, each node has only 3 valid relationships
• Forcing all nodes to use all 7 aggregated vectors will mislead the network

• GaAN adds soft gates on the attention heads to control their relative 
importance.
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GaAN – Gated Attention Networks

• g" is between 0 (low importance) and 1 (high importance)
• We use a small convolu:onal network to compute g"

Importance

Attention head

Number of heads
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GaAN – Inductive Node Classification

• Compare the performance of different graph aggregators
• Goal: classify unseen tes8ng nodes

1

0 1

0
0

0
1

1 1
1

0

L1

!"# !"$ !"%

Data Label
Any graph aggregator
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GaAN – Datasets

• PPI: Protein-protein interaction graph. Human tissue.
• Reddit: Posts are connected if the same user commented on them.

Mul;-label

Multi-class

So far the largest dataset
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GaAN – Main Results

[Hamilton et al., 2017]

[Veliˇckovi ́c et al., 2018]

[Chen et al., 2018]

SOTA 
performance

Implemented by us
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GaAN – Visualizing the Gate Values

• The gate-genera+on network can be learned to assign different 
importance to different heads.

Reddit Dataset
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GGRU – RNNs for Spatiotemporal Graphs

• Unified framework to convert graph aggregators to RNNs for 
spatiotemporal graphd
• Graph GRU (GGRU)

• States/Inputs are all graphs
• means applying the graph aggregator for all nodes in     ,
• !": input features, #": hidden states of the nodes
• $": the update gate, %": the reset gate
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GGRU – EF Structure for STSF-IG
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Conclusion

• Architectures for STSF-RG
• ConvLSTM

• Convolutional recurrence
• First ML solution for precipitation nowcasting

• TrajGRU
• Actively learns the recurrent connection

• HKO-7
• First large-scale benchmark for precipitation nowcasting

• Architectures for STSF-IG
• GaAN

• Soft gates to control each attention heads’ importance
• SOTA performance for inductive node classification on large graph

• GGRU
• Unified framework for converting graph aggregator to RNN for STSF-IG
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Future Work

• Use GGRU for traffic speed 
forecasting

• Add a global external memory 
structure to the existing 
models

• Handle uncertainty by using 
probabilistic 
encoder/forecaster
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